交点部を有する2本のケーブルの張力算定に関する研究

古川愛子*1

1. 研究の目的

ニールセンローゼ橋はケーブル構造物の一種であり,2 本または2本以上のケーブルが交点クランプで連結されて いるという特徴を有する.施工及び維持管理する上でケー ブルの張力が設定張力を満足しているか確認する必要があ るが,現行では,交点クランプを取り外し,高次振動法¹⁾ 等を各ケーブルに適用することで張力を推定している.し かし,交点クランプの取り外し・取り付け作業には多くの 労力や時間がかかる.また,作業のために交通規制も行う 必要がある.そこで,交点クランプを取り付けたまま2本 のケーブルの張力を同時に推定する手法を提案することを 本研究の目的とする.

2. 研究の方法

(1) 張力推定手法の提案

まず,高次振動法について説明する.加速度センサを設置 したケーブルを加振し、得られた加速度波形をフーリエ変 換し固有振動数fiを求め張力推定式(1)に代入すると未知数 T, EI の式が次数の数だけ立式できるのでそれらに最小二 乗法を適用して張力Tを推定することができる. ここで i: モード次数, fi:モード次数 i の固有振動数, L:ケーブル 長, T: 張力, EI: 曲げ剛性, A: 断面積, ρ: 密度である. しかし、式(1)は1本のケーブルに対して適用できる推定式 であり、交点クランプで2本のケーブルが繋がれた構造に 対しては適用できない. そこで Fig.1 のような交点クラン プを有するケーブルモデルを対象とした新たな張力推定式 を面外方向・面内方向それぞれに対して考える. ケーブル を張力のかかったはりとみなすと面外方向の振動方程式は 式(2)で表せる.2つのケーブルが交点クランプにより1点 で結合された状態、かつ両端ピン支持の境界条件のもと式 (2)を解くと式(3)が得られる.式(3)は面外方向の固有振動数 を用いた張力推定式(手法1)である.同様にして,面内方 向の固有振動数を用いた張力推定式(手法2)は式(4)のよ うになる.式(3)(4)の各gは式(5)を,式(5)のα_i,β_i,η_iは式 (6)を満足する値であり、kはケーブル番号 (k=1,2)である. 固有振動数fiを式(6)に代入したときに式(3)(4)の左辺が0に なるという制約条件を用いて,2本のケーブルの張力 T₁, T₂ を推定する、副次的に、手法1では2本のケーブルの曲げ 剛性,手法2では2本のケーブルの曲げ剛性と軸剛性も推 定される.式(3),(4)は高次振動法の式(1)と異なり,固有振 動数の次数を特定する必要がないという利点がある.これ らの手法による張力推定精度の検証を次章以降で行う.

$$f_i^2 = \frac{\pi^2 E I}{4\rho A L^4} i^4 + \frac{T}{4\rho A L^2} i^2 \tag{1}$$

$$EI\frac{\partial^4 y}{\partial x^4} + \rho A\frac{\partial^2 y}{\partial t^2} - T\frac{\partial^2 y}{\partial x^2} = 0$$
(2)

$$g_{11} \ g_{22} + g_{12}g_{21} \frac{g_{32}}{g_{31}} = 0 \tag{3}$$

$$cos^{2}\theta \left(g_{11}g_{22} + g_{12}g_{21}\frac{g_{32}}{g_{31}}\right) \left(g_{41}g_{52} + g_{42}g_{51}\frac{g_{62}}{g_{61}}\right) + sin^{2}\theta \left(g_{11}g_{52} + g_{42}g_{21}\frac{g_{62}}{g_{31}}\right) \left(g_{41}g_{22} + g_{12}g_{51}\frac{g_{32}}{g_{61}}\right) = 0$$

$$(4)$$

$$g_{1k} = \sin \alpha_{ki} L_k \tag{5a}$$

$$g_{2k} = \sin \alpha_{ki} L_{k1} \sin \alpha_{ki} L_{k2} - \frac{\beta_{ki}}{\beta_{ki}} \sin \alpha_{ki} L_k - H_{ki}$$
(5b)

$$g_{3k} = \sum_{k} n_k (u_{ki} + p_{ki}) u_{ki}, \quad g_{4k} = \sin n_k i_k (50,54)$$

$$g_{5k} = \sum_{k} n_k i_{ki} (50,54)$$

$$H_{ki} = \frac{1 + e^{-2\beta_{ki}L_k} - e^{-2\beta_{ki}L_{k1}} - e^{-2\beta_{ki}L_{k2}}}{2(1 - e^{-2\beta_{ki}L_k})}$$
(5g)

$$\alpha_i = \sqrt{\sqrt{\left(\frac{T}{2EI}\right)^2 + \frac{\rho A (2\pi f_i)^2}{EI} - \frac{T}{2EI}}}$$
(6a)

$$\beta_i = \sqrt{\sqrt{\left(\frac{T}{2EI}\right)^2 + \frac{\rho A (2\pi f_i)^2}{EI} + \frac{T}{2EI}}$$
(6b)

$$\eta_i = 2\pi f_i \sqrt{\frac{\rho A}{EA}}$$
(6c)

Fig.1 Analytical model of 2 cables with a clamp

(2) 数値実験による検証

提案式の妥当性を調べるため数値実験を行った.まず, 有限要素法により様々な交点クランプ付き2ケーブルモデ ルの固有振動数を求めた.用いた4種類のケーブルA,B, C, Dの諸元を Table.1 に示す. ケーブル 1 の条長は 10m, 20m, 40m の 3 通り, ケーブル 1 と 2 の組み合わせについ て4通り (A-A, B-B, A-C, B-D), 交点クランプの位置を 3 通り(端部から 30%, 50%, 90%), ケーブルの交差角を 3 通り (50, 60, 70 度), 2 本のケーブル条長比を 4 通り (1.0, 0.95, 0.85, 0.75) など, 計54 ケースに対して張力 推定を行った. 推定に使用する固有振動数の数について高 次振動法では未知数は2つであるが精度を良くするために 5 つの固有振動数を用いるのが良いとされている ¹⁾. 面外 方向の推定式には張力 T1, T2, 曲げ剛性 EI1, EI2の計4つ の未知数が含まれるため4つ以上必要である. 面内方向の 推定式には張力 T1, T2, 曲げ剛性 EI1, EI2に加えて軸剛性 EA1, EA2の計6つの未知数が含まれるため6つ以上必要で ある. そこで、面外方向・面内方向ともに余裕を持たせて 7 次までの固有振動数を用いて張力推定を行った. 推定結 果を Fig.2 に示す.赤色が面外方向,青色が面内方向の推定 結果である.縦軸は推定値と真値の比であり、この値が1

^{*}京都大学大学院・工学研究科・准教授

に近づくほど精度が高いことを表している. 真値とは Table.1の張力のd値のことである. 推定式の張力推定精度 はいずれのケースでも誤差±5%以内であり,張力が精度よ く推定されていることが確認できる.

(3) 模型実験による検証

提案式の妥当性を検証するため模型実験を行った.実験 装置の概要は Fig.3 に示す.各ケーブル諸元は Table.2 のと おりであり、面外・面内方向の固有振動数は Table.3 の通り である. 張力推定結果を Table.4 に示す. ロードセルで測定 した張力を真値とした. Table.4 を見ると、手法1の誤差は 10.0%, 0.1%ある. また, 手法2では誤差が12.4%, 29.3% 生じており精度が悪い.ここで、高次振動法では誤差±5% 以内の測定精度を有していることが確認されており²⁾,本 手法は高次振動法に比べて誤差が大きいことが分かる. の誤差の原因として、推定式の境界条件はピン支持であっ たのに対して実験では完全なピン支持ではないこと、推定 式では交点クランプを点で表したのに対し実験では大きさ を有すること、面内方向の方が交点クランプによる拘束効 果が大きいこと、ケーブル長が 7.8m と短いために境界条 件や交点クランプの寸法の影響が無視できず、特に面内方 向で影響が大きかったためではないかと考えた.

3. 得られた成果

2本のケーブルが交点クランプで連結されたニールセン ローゼ橋の張力推定手法を提案した.面外方向の固有振動 数を用いる手法1と,面内方向の固有振動数を用いる手法 2の2通りの手法を提案した.数値実験では,いずれの手 法も張力の推定誤差は5%未満であり,精度良く張力を推 定できた.模型実験では,手法1では10%以内の精度で推 定できたが,手法2の精度に課題を残した.今後は,より 実際の条件に近い模型実験により手法の有効性を検証した い.

Table.1 Cable condition

cable	Tension Density		Sectional Area	Second Moment Of Area	Young's Modulus
	T [kN]	ρ [kg/m3]	A [mm2]	I [m4]	E [kN/mm2]
А	280.5	8600	1190	6.41E-08	196
В	661.5	8600	2810	3.52E-07	196
С	336	8600	1420	8.99E-08	196
D	771	8600	3270	4.72E-07	196

Fig.2 Accuracy of estimated tension

Fig.3 Experimental device

Table 2	E	1
laple.2	Experimenta	i conditions

Cable 1	T ₁ [kN]	ρ_1 [kg/m ³]	$A_1 \left[m^2\right]$	$I_1 \left[m^4\right]$	$E_1 [kN/m^2]$
	150.4	8001.503	0.000532	1.15E-08	1.96E+08
Cable 2	T ₂ [kN]	ρ ₂ [kg/m ³]	$A_2 [m^2]$	$I_2 [m^4]$	E_2 [kN/mm ²]
	103.0	8001.505	0.000532	1.15E-08	1.90E+08
Relationship	L ₁ [m]	L_{k1}/L_k	θ[°]	L_2/L_1	
between 2 cables	7.836	0.5	40	0.999872	

Table.3 Natural frequencies used for estimation (Hz)

Out of Plane	11.33	24.41	25.9	35.08	51.76	78.16	82.58
In Plane	11.25	25.59	34.77	52.46	61.21	81.8	111.48

	Table.4 Accuracy of estimated tension by experiments								
	True Value		Meth	thod 1 Method 2		nod 2			
			(Estimated Value		(Estimated Value				
			/True V	/alue)	/True Value)				
	T1 [kN]	T ₂ [kN]	T1 [kN]	T ₂ [kN]	T1 [kN]	T ₂ [kN]			
	150.4	103.6	165.4	103.7	169.0	73.2			
	150.4		(1.100)	(1.001)	(1.124)	(0.707)			

4. 謝辞

研究遂行にあたり,理論計算を担当した当研究室修士課 程学生の山田哲君,実験を担当してくださった神鋼鋼線工 業株式会社の関係者各位に心より感謝申し上げます.

発表論文

山田哲,古川愛子,小林亮介,交点クランプを有する2ケ ーブルの同時張力推定手法の開発,土木学会 第23回応 用力学シンポジウム講演概要集,S01A-01,2020年5月. 山田哲,古川愛子,小林亮介,ニールセンローゼ橋におけ る張力推定手法の提案,2020年度土木学会関西支部年次学 術講演会,I-30,2020年5月.

参考文献

1)山極伊知郎, 宇津野秀夫, 遠藤浩司, 杉井謙一:高次の固 有振動数を利用した線材の張力と曲げ剛性の同定法, 日本 機械学会論文集(C編), 66巻, 649号, 2000年 2) 神鋼鋼線工業株式会社, 外ケーブルの張力推定技術, http://www.shinko-wire.co.jp/products/vibration.html